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 Why do we care about Ricci flow?

 Ricci flow is a basic tool to solve the Poincare 
Conjecture.

 What is Poincare Conjecture?



Poincare Conjecture
 Conjectured by Henri Poincare in 1904

 Is one of the Millennium Prize Problems

i.e. can get US $1,000,000 if you solved it!

 A proof of this conjecture was given by Grigori
Perelman in 2003; its review was completed in August 
2006.

 What is the statement?

Every simply connected, closed 3-manifold is 
homeomorphic to the 3-sphere.



Poincare Conjecture



Other dimensions
 dim = 1,2, known for a long time

 In 1961,  Stephen proved the Generalized Poincaré
conjecture for dimensions > 4. 

 In 1982 Michael Freedman proved the Poincaré
conjecture in dimension four.

 So only original dimension 3 case left since then.



A few terms to go over
 Tangent

 Curvature

 Division algebra



Tangent
 Tangent line (for curves)

At each point, get a line
1 dimension!



 Tangent plane (for surfaces)

 2 dimension!

 Vectors 𝑢, 𝑣

 Imagine it is ℝ2



 For space of higher dimension (dim 𝑛), we have 
tangent space of dimension 𝑛.

 Can Imagine we have ℝ𝑛 attaching to each point



Curvature
 Curvature of a plane curve

 Tells  you how ‘curvy’ a curve is

 How much it bends away from tangent

 Curvature of straight line

 Not curvy. So the curvature = 0.



 Curvature of a circle

 A circle with larger radius. It seems to be more flat

 So for a circle of radius r, curvature =
1

𝑟

Note: Every point on the circle have the same curvature. 
Conversely, if a curve without boundary is of constant 
curvature, it is a circle. 



Curvature of a surface
 Want to generalize what we have for curve

 Cut the surface by the plane generated by normal 
vector and another vector. Get a curve



Normal curvature



Gaussian curvature
 Take the max and the min normal curvature

 Gaussian curvature = max × min.

 Gaussian curvature of a plane = 0

 A sphere has constant positive curvature.

 Again if a simply connected ‘nice’ surface is of constant 
positive curvature, it ‘is’ a sphere.



Higher Dimension
 Higher dimension, we generalize Gaussian curvature 

to sectional curvature.

 Take a 2-plane (ℝ2) in the tangent space (ℝ𝑛), 
calculate the ‘Gaussian curvature’ associated to the 2-
plane

 Again if a simply connected ‘nice’ surface is of constant 
positive curvature, it ‘is’ a sphere.

 Ricci Curvature
 Measure the local deformation of an n-sphere.



Real division algebras
 Real number ℝ : can do +, −,×,

 Ask: can we extend this?

 Get complex number ℂ
 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 are real numbers. 

 Can think of it as ℝ2

 Conjugate 𝑎 + 𝑏𝑖 = a − bi

 Further extend, we have Quaternions ℍ
 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, can think of as ℝ4

 One more: Octonion 𝕆
 Similarly, can think of as ℝ8

 That’s all!



Ricci Flow
• Introduce by Hamilton 

Ricci.
• A procedure for 

transforming irregular 
spaces into uniform ones.

• Over time, the irregularly 
curved dumbbell relaxes 
into a uniformly curved 
surface, in a 2-dimensional 
version of the Ricci flow.

• Is basically a differential 
equation. We will come 
back to the equation later.



How is Poincare Conjecture related 
to Ricci flow?
 Hamilton proved that a compact 3-manifold with 

positive Ricci curvature is deformed to a space of 
constant positive sectional curvature. 

 This implies that if a simply connected compact 3-
manifold has a metric with positive Ricci curvature, it 
is diffeomorphic to the sphere 𝕊3.



Goal!
 Under Ricci flow, the Wallach spaces

1. With strictly positive sectional curvature turns into 
mixed sectional curvature

2. With positive Ricci tensor would turns to negative

3. Not all of them would turn from positive sectional 
curvature to negative Ricci
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G K

𝑆𝑈(3) 𝑇2

𝑆𝑝(3) 𝑆𝑝 1 × 𝑆𝑝 1 × 𝑆𝑝(1)

𝐹4 𝑆𝑝𝑖𝑛 8

 Consider the spaces M=G/K , where

G K

𝑈(3, ℂ) 𝑈 1, ℂ × 𝑈 1, ℂ × 𝑈 1, ℂ

𝑈(3, ℍ) 𝑈 1, ℍ × 𝑈 1, ℍ × 𝑈 1, ℍ

𝐹4" = "𝑈(3, 𝕆) 𝑆𝑝𝑖𝑛(8)" = "𝑈 1, 𝕆 × 𝑈 1, 𝕆 × 𝑈 1, 𝕆

What are Wallach Varieties?



• The tangent space

𝑇 𝑀 𝑒𝐾 = 𝔽 ⊕ 𝔽 ⊕ 𝔽 = ℝ𝑑 ⊕ ℝ𝑑 ⊕ ℝ𝑑 , where

𝔽 = ℂ,ℍ, 𝕆, and 𝑑 = 2,4,8 respectively
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Space Tangent space Dimension

1 ℂ ⊕ ℂ ⊕ ℂ (ℝ2 ⊕ ℝ2 ⊕ ℝ2) 6

2 ℍ ⊕ ℍ ⊕ ℍ (ℝ4 ⊕ ℝ4 ⊕ ℝ4) 12

3 𝕆 ⊕ 𝕆 ⊕ 𝕆 (ℝ8 ⊕ ℝ8 ⊕ ℝ8) 24



Set Up
 Metric (‘inner ‘ product on the tangent space ℝ𝑛)

 ℝ𝑛: < 𝑣1, 𝑣2 > = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯

 … , … 𝑒𝐾 = 𝑥1 … , … 1 + 𝑥2 … , … 2 + 𝑥3 … , … 3,
where 𝑥𝑖 > 0 and 𝑧, 𝑤 𝑖 = 𝑅𝑒 𝑧  𝑤.

Represent it as (𝑥1, 𝑥2, 𝑥3).

 (Wallach, 1972)
 If 𝑥1 = 𝑥2,

 then the sectional curvature is strictly positive if 0 <
𝑥3

𝑥1
< 1 or 

1 <
𝑥3

𝑥1
<

4

3
and there is some strictly negative curvature if  

𝑥3

𝑥1
>

4

3
.





• At that time, no compact homogeneous spaces with 
strictly positive sectional curvature are known.

• Wallach has given this 3 new examples (at that time) 
of compact even dimensional homogeneous spaces 
admitting homogeneous Riemannian structures of 
strictly positive curvature. 

• Until now, the 6 dim space is still the known space 
with lowest dimension and the 24 dim is the example 
of highest dimension
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 Corresponding to 𝑥1, 𝑥2, 𝑥3 , the Ricci curvature
𝑟1𝑥1 … , … 1 + 𝑟2𝑥2 … , … 2 + 𝑟3𝑥3 … , … 3

 Where 𝑟𝑖 are calculated as

𝑟𝑖 =
𝑑 𝑥𝑖

2 − 𝑑 𝑥𝑗
2 − 𝑑 𝑥𝑘

2 + 10𝑑 − 8 𝑥𝑗𝑥𝑘

2𝑥1𝑥2𝑥3

where 𝑑 = 2,4, 8 and 𝑖, 𝑗, 𝑘 = 1,2,3 .



Ricci flow equation
 In this setting, the Ricci flow eqn. can been given as

𝑑𝑥𝑖

𝑑𝑡
= −2 𝑟𝑖𝑥𝑖

 The goal is to say what happens to positive sectional 
curvature or Ricci curvature under the above non-
linear ODE.

 Note the set of metrics with 𝑥𝑖 = 𝑥𝑗 are preserved by 

the Ricci flow.

 Permutation of the indices of 𝑥𝑖 also preserves the 
solutions



Sectional curvature
 Start with a metric with 𝑥1 = 𝑥2 = 1.

 Recall there is some negative sectional curvature if the 

metric 𝑥1, 𝑥2, 𝑥3 = (1,1, 𝑢) with 𝑢 >
4

3

 i.e. want 𝑢 =
𝑥3

𝑥1
increase from 

4

3

 Question: Want 
𝑥3

𝑥1
increase means want 

𝑑

𝑑𝑡
 
𝑡=0

𝑥3 𝑡

𝑥1 𝑡
> 0,= 0,< 0?

 > 0



 To prove some curvature turns negative, it suffices to 

start from initial metric as 1, 1,
4

3
and check   

𝑑

𝑑𝑡
 
𝑡=0

𝑥3 𝑡

𝑥1 𝑡
> 0



 How to  
𝑑

𝑑𝑡

𝑥3 𝑡

𝑥1 𝑡
?

 Quotient rule!
𝑑

𝑑𝑡

𝑥3 𝑡

𝑥1 𝑡
=

𝑥3
′ 𝑡 𝑥1 𝑡 − 𝑥3 𝑡 𝑥1

′ 𝑡

𝑥1 𝑡 2

𝑑

𝑑𝑡

𝑥3 𝑡

𝑥1 𝑡
= −2

𝑥3 𝑡

𝑥1 𝑡
𝑟3 − 𝑟1

𝑑𝑥𝑖

𝑑𝑡
= −2 𝑟𝑖𝑥𝑖



 −2 𝑟3 − 𝑟1  𝑡=0 = −2 +
4𝑑

3
> 0

 Theorem (-, Wallach)

On the Wallach spaces, the Ricci flow deforms 
certain positively curved metrics into metrics with 
mixed sectional curvatures.



 Further look in the case 𝑥1 = 𝑥2

 2 𝑟1 − 𝑟3 =
−2 1−

𝑥3
𝑥1

4𝑑−4−𝑑
𝑥3
𝑥1

𝑥1𝑥3

 Look at the critical point (i.e. 
𝑑

𝑑𝑡

𝑥3 𝑡

𝑥1 𝑡
= 0)



 This implies that if 1 <
𝑥3 𝑡

𝑥1 𝑡
<

4 𝑑−1

𝑑
, then

lim
𝑡→∞

𝑥3 𝑡

𝑥1 𝑡
=

4 𝑑−1

𝑑
under the Ricci flow

 As 
4

3
<

4 𝑑−1

𝑑
for 𝑑 = 2,4,8, we still get the above 

theorem

 Note the line for 
𝑥3

𝑥1
goes from 1 to 

4 𝑑−1

𝑑
gives a full set 

of Einstein metrics for 𝑥1 = 𝑥2. Hence this tell us the 
Ricci flow flows from one Einstein metric to another 
one



Imaginary end


