Ricci flow, Wallach Spaces and High school calculus Man Wai Cheung University of California, San Diego University of Cambridge

- Why do we care about Ricci flow?
- Ricci flow is a basic tool to solve the Poincare Conjecture.
- What is Poincare Conjecture?

Poincare Conjecture

- Conjectured by Henri Poincare in 1904
- Is one of the **Millennium Prize Problems**

i.e. can get US \$1,000,000 if you solved it!

- A proof of this conjecture was given by Grigori Perelman in 2003; its review was completed in August 2006.
- What is the statement?

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

Poincare Conjecture

Other dimensions

- dim = 1,2, known for a long time
- In 1961, Stephen proved the Generalized Poincaré conjecture for dimensions > 4.
- In 1982 Michael Freedman proved the Poincaré conjecture in dimension four.
- So only original dimension 3 case left since then.

A few terms to go over

- Tangent
- Curvature
- Division algebra

Tangent

• Tangent line (for curves)

At each point, get a line 1 dimension!

- 2 dimension!
- Vectors *u*, *v*
- Imagine it is \mathbb{R}^2

- For space of higher dimension (dim *n*), we have tangent space of dimension *n*.
- Can Imagine we have \mathbb{R}^n attaching to each point

Curvature

• Curvature of a plane curve

- Tells you how 'curvy' a curve is
- How much it bends away from tangent

- Curvature of straight line
 - Not curvy. So the curvature = 0.

- Curvature of a circle
 - A circle with larger radius. It seems to be more flat
 - So for a circle of radius **r**, curvature = $\frac{1}{r}$

Note: Every point on the circle have the same curvature. Conversely, if a curve without boundary is of constant curvature, it is a circle.

Curvature of a surface

• Want to generalize what we have for curve

 Cut the surface by the plane generated by normal vector and another vector. Get a curve

Normal curvature

Gaussian curvature

- Take the max and the min normal curvature
 - Gaussian curvature = max × min.
- Gaussian curvature of a plane = 0
- A sphere has constant positive curvature.
- Again if a simply connected 'nice' surface is of constant positive curvature, it 'is' a sphere.

Higher Dimension

- Higher dimension, we generalize Gaussian curvature to sectional curvature.
- Take a 2-plane (R²) in the tangent space (Rⁿ), calculate the 'Gaussian curvature' associated to the 2plane
- Again if a simply connected 'nice' surface is of constant positive curvature, it 'is' a sphere.
- Ricci Curvature
 - Measure the local deformation of an n-sphere.

Real division algebras

- Real number \mathbb{R} : can do +, -,×, -
- Ask: can we extend this?
- Get complex number C
 - a + bi, where a, b are real numbers.
 - Can think of it as \mathbb{R}^2
 - Conjugate $\overline{a + bi} = a bi$
- Further extend, we have Quaternions $\mathbb H$
 - a + bi + cj + dk, can think of as \mathbb{R}^4
- One more: Octonion [®]
 - Similarly, can think of as \mathbb{R}^8
- That's all!

Ricci Flow

- Introduce by Hamilton Ricci.
- A procedure for transforming irregular spaces into uniform ones.
- Over time, the irregularly curved dumbbell relaxes into a uniformly curved surface, in a 2-dimensional version of the Ricci flow.
- Is basically a differential equation. We will come back to the equation later.

How is Poincare Conjecture related to Ricci flow?

- Hamilton proved that a compact 3-manifold with positive Ricci curvature is deformed to a space of constant positive sectional curvature.
- This implies that if a simply connected compact 3manifold has a metric with positive Ricci curvature, it is diffeomorphic to the sphere S³.

Goal!

- Under Ricci flow, the Wallach spaces
- 1. With strictly positive sectional curvature turns into mixed sectional curvature
- 2. With positive Ricci tensor would turns to negative
- 3. Not all of them would turn from positive sectional curvature to negative Ricci

What are Wallach Varieties?

• Consider the spaces M=G/K , where

G	K
<i>SU</i> (3)	T^2
<i>Sp</i> (3)	$Sp(1) \times Sp(1) \times Sp(1)$
F_4	Spin(8)

• Equivalently, with M = G/K, we can think as

G	K
<i>U</i> (3, ℂ)	$U(1,\mathbb{C}) \times U(1,\mathbb{C}) \times U(1,\mathbb{C})$
$U(3,\mathbb{H})$	$U(1,\mathbb{H}) \times U(1,\mathbb{H}) \times U(1,\mathbb{H})$
$F_4"="U(3,\mathbb{O})$	$Spin(8)^{"} = "U(1, \mathbb{O}) \times U(1, \mathbb{O}) \times U(1, \mathbb{O})$

• The tangent space

 $T(M)_{eK} = \mathbb{F} \bigoplus \mathbb{F} \bigoplus \mathbb{F} = \mathbb{R}^d \bigoplus \mathbb{R}^d \bigoplus \mathbb{R}^d$, where $\mathbb{F} = \mathbb{C}, \mathbb{H}, \mathbb{O}$, and d = 2,4,8 respectively

Space	Tangent space	Dimension
1	$\mathbb{C} \bigoplus \mathbb{C} \bigoplus \mathbb{C} \ (\mathbb{R}^2 \bigoplus \mathbb{R}^2 \bigoplus \mathbb{R}^2)$	6
2	$\mathbb{H} \oplus \mathbb{H} \oplus \mathbb{H} \ (\mathbb{R}^4 \oplus \mathbb{R}^4 \oplus \mathbb{R}^4)$	12
3	$\mathbb{O} \oplus \mathbb{O} \oplus \mathbb{O} (\mathbb{R}^8 \oplus \mathbb{R}^8 \oplus \mathbb{R}^8)$	24

Set Up

- Metric ('inner' product on the tangent space \mathbb{R}^n)
 - $\mathbb{R}^n: \langle v_1, v_2 \rangle = x_1y_1 + x_2y_2 + \cdots$
- $\langle ..., ... \rangle_{eK} = x_1 \langle ..., ... \rangle_1 + x_2 \langle ..., ... \rangle_2 + x_3 \langle ..., ... \rangle_3$ where $x_i > 0$ and $\langle z, w \rangle_i = Re \ z \ \overline{w}$. Represent it as (x_1, x_2, x_3) .
- (Wallach, 1972)
 - If $x_1 = x_2$,
 - then the sectional curvature is strictly positive if $0 < \frac{x_3}{x_1} < 1$ or

 $1 < \frac{x_3}{x_1} < \frac{4}{3}$ and there is some strictly negative curvature if $\frac{x_3}{x_1} > \frac{4}{3}$.

- At that time, no compact homogeneous spaces with strictly positive sectional curvature are known.
- Wallach has given this 3 new examples (at that time) of compact even dimensional homogeneous spaces admitting homogeneous Riemannian structures of strictly positive curvature.
- Until now, the 6 dim space is still the known space with lowest dimension and the 24 dim is the example of highest dimension

• Corresponding to (x_1, x_2, x_3) , the Ricci curvature $r_1 x_1 \langle \dots, \dots \rangle_1 + r_2 x_2 \langle \dots, \dots \rangle_2 + r_3 x_3 \langle \dots, \dots \rangle_3$ • Where r_i are calculated as $r_i = \frac{d x_i^2 - d x_j^2 - d x_k^2 + (10d - 8)x_j x_k}{2x_1 x_2 x_3}$

where d = 2,4,8 and $\{i, j, k\} = \{1,2,3\}$.

Ricci flow equation

• In this setting, the Ricci flow eqn. can been given as

$$\frac{dx_i}{dt} = -2 r_i x_i$$

- The goal is to say what happens to positive sectional curvature or Ricci curvature under the above non-linear ODE.
- Note the set of metrics with $x_i = x_j$ are preserved by the Ricci flow.
- Permutation of the indices of x_i also preserves the solutions

Sectional curvature

- Start with a metric with $x_1 = x_2 = 1$.
- Recall there is some negative sectional curvature if the metric $(x_1, x_2, x_3) = (1, 1, u)$ with $u > \frac{4}{3}$

• i.e. want
$$u = \frac{x_3}{x_1}$$
 increase from $\frac{4}{3}$

• Question: Want $\frac{x_3}{x_1}$ increase means want $\frac{d}{dt}\Big|_{t=0} \frac{x_3(t)}{x_1(t)} > 0, = 0, < 0?$

• To prove some curvature turns negative, it suffices to start from initial metric as $(1, 1, \frac{4}{3})$ and check $\frac{d}{dt}\Big|_{t=0} \frac{x_3(t)}{x_1(t)} > 0$

• How to
$$\frac{d}{dt} \frac{x_3(t)}{x_1(t)}$$
?
• Quotient rule!
 $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = \frac{x'_3(t) x_1(t) - x_3(t) x'_1(t)}{x_1(t)^2}$
 $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = -2 \frac{x_3(t)}{x_1(t)} (r_3 - r_1)$
 $\frac{dx_i}{dt} = -2 r_i x_i$

•
$$-2(r_3 - r_1)|_{t=0} = -2 + \frac{4d}{3} > 0$$

• Theorem (-, Wallach)

On the Wallach spaces, the Ricci flow deforms certain positively curved metrics into metrics with mixed sectional curvatures. • Further look in the case $x_1 = x_2$

•
$$2(r_1 - r_3) = \frac{-2(1 - \frac{x_3}{x_1})(4d - 4 - d\frac{x_3}{x_1})}{x_1 x_3}$$

• Look at the critical point (i.e. $\frac{d}{dt} \frac{x_3(t)}{x_1(t)} = 0$)

- This implies that if 1 < \$\frac{x_3(t)}{x_1(t)}\$ < \$\frac{4(d-1)}{d}\$, then \$\lim_{t→\infty}\$ \$\frac{x_3(t)}{x_1(t)}\$ = \$\frac{4(d-1)}{d}\$ under the Ricci flow

 As \$\frac{4}{3}\$ < \$\frac{4(d-1)}{d}\$ for \$d\$ = 2,4,8\$, we still get the above theorem
- Note the line for $\frac{x_3}{x_1}$ goes from 1 to $\frac{4(d-1)}{d}$ gives a full set of Einstein metrics for $x_1 = x_2$. Hence this tell us the Ricci flow flows from one Einstein metric to another one

Thank you! Imaginary end